Flytende gjennomsnitt Dette eksemplet lærer deg hvordan du beregner det bevegelige gjennomsnittet av en tidsserie i Excel. Et glidende gjennomsnitt brukes til å utjevne uregelmessigheter (topper og daler) for enkelt å gjenkjenne trender. 1. Først, ta en titt på vår tidsserie. 2. På Data-fanen klikker du Dataanalyse. Merk: kan ikke finne dataanalyseknappen Klikk her for å laste inn add-in for Analysis ToolPak. 3. Velg Flytt gjennomsnitt og klikk OK. 4. Klikk i feltet Inngangsområde og velg området B2: M2. 5. Klikk i intervallboksen og skriv inn 6. 6. Klikk i feltet Utmatingsområde og velg celle B3. 8. Skriv en graf av disse verdiene. Forklaring: fordi vi angir intervallet til 6, er glidende gjennomsnitt gjennomsnittet for de forrige 5 datapunktene og det nåværende datapunktet. Som et resultat blir tinder og daler utjevnet. Grafen viser en økende trend. Excel kan ikke beregne det bevegelige gjennomsnittet for de første 5 datapunktene fordi det ikke er nok tidligere datapunkter. 9. Gjenta trinn 2 til 8 for intervall 2 og intervall 4. Konklusjon: Jo større intervallet jo flere tinder og daler utjevnes. Jo mindre intervallet, jo nærmere de bevegelige gjennomsnittene er de faktiske datapunktene. OR-Notes er en serie innledende notater om emner som faller under den brede overskriften i operasjonsforskningsområdet (OR). De ble opprinnelig brukt av meg i et innledende eller kurs jeg gir på Imperial College. De er nå tilgjengelige for bruk av studenter og lærere som er interessert i ELLER underlagt følgende betingelser. En fullstendig liste over emnene som er tilgjengelige i OR-Notes finner du her. Prognoseeksempler Prognoseeksempel 1996 UG-eksamen Etterspørselen etter et produkt i hver av de siste fem månedene er vist nedenfor. Bruk et to måneders glidende gjennomsnitt for å generere en prognose for etterspørsel i måned 6. Bruk eksponensiell utjevning med en utjevningskonstant på 0,9 for å generere en prognose for etterspørsel etter etterspørsel i måned 6. Hvilken av disse to prognosene foretrekker du og hvorfor De to måneders bevegelse gjennomsnitt for måneder to til fem er gitt av: Forventet for måned seks er bare det bevegelige gjennomsnittet for måneden før det vil si det bevegelige gjennomsnittet for måned 5 m 5 2350. Bruk av eksponensiell utjevning med en utjevningskonstant på 0,9 får vi: Som før prognosen for måned seks er bare gjennomsnittet for måned 5 M 5 2386 For å sammenligne de to prognosene beregner vi gjennomsnittlig kvadratfeil (MSD). Hvis vi gjør dette, finner vi at for glidende gjennomsnittlig MSD (15-19) sup2 (18-23) sup2 (21-24) sup23 16,67 og for det eksponentielt glatte gjennomsnittet med en utjevningskonstant på 0,9 MSD (13-17) sup2 (16,60 - 19) sup2 (18,76 - 23) sup2 (22,58 - 24) sup24 10,44 Totalt sett ser vi at eksponensiell utjevning ser ut til å gi de beste månedene forutgående prognoser da den har en lavere MSD. Derfor foretrekker vi prognosen for 2386 som er produsert ved eksponensiell utjevning. Prognoseeksempel 1994 UG-eksamen Tabellen nedenfor viser etterspørselen etter en ny ettershave i en butikk for hver av de siste 7 månedene. Beregn et to måneders glidende gjennomsnitt i måneder to til syv. Hva ville være din prognose for etterspørselen i måneden åtte Gjør eksponensiell utjevning med en utjevningskonstant på 0,1 for å utlede en prognose for etterspørselen i måned åtte. Hvilke av de to prognosene for måned åtte foretrekker du, og hvorfor Butikkmannen mener at kunder bytter til denne nye aftershave fra andre merker. Diskuter hvordan du kan modellere denne bytteadferd og indikere dataene du vil trenge for å bekrefte om denne bytte forekommer eller ikke. Den to måneders glidende gjennomsnittet for måneder to til syv er gitt av: Forventningen for måned åtte er bare det bevegelige gjennomsnittet for måneden før det vil si det glidende gjennomsnittet for måned 7 m 7 46. Bruk av eksponensiell utjevning med en utjevningskonstant på 0,1 vi få: Som før prognosen for måned åtte er bare gjennomsnittet for måned 7 M 7 31.11 31 (som vi ikke kan ha fraksjonær etterspørsel). For å sammenligne de to prognosene beregner vi gjennomsnittlig kvadratisk avvik (MSD). Hvis vi gjør dette, finner vi det for glidende gjennomsnitt og for eksponensielt glatt gjennomsnitt med en utjevningskonstant på 0,1 Generelt sett ser vi at to måneders glidende gjennomsnitt ser ut til å gi de beste månedene fremoverprognoser da det har en lavere MSD. Derfor foretrekker vi prognosen på 46 som er produsert av to måneders glidende gjennomsnitt. For å undersøke bytte ville vi måtte bruke en Markov-prosessmodell, hvor stater merker og vi ville trenge innledende statsinformasjon og kundeendring sannsynligheter (fra undersøkelser). Vi må kjøre modellen på historiske data for å se om vi har en passform mellom modellen og historisk oppførsel. Forecasting eksempel 1992 UG eksamen Tabellen nedenfor viser etterspørselen etter et bestemt merke av barberhøvel i en butikk for hver av de ni siste månedene. Beregn et tre måneders glidende gjennomsnitt i måneder tre til ni. Hva ville være din prognose for etterspørselen i måneden ti Bruk eksponensiell utjevning med en utjevningskonstant på 0,3 for å utlede en prognose for etterspørselen i måned ti. Hvilke av de to prognosene for tiende måned foretrekker du og hvorfor Det tre måneders glidende gjennomsnittet for måneder 3 til 9 er gitt av: Forventningen for måned 10 er bare det bevegelige gjennomsnittet for måneden før det vil si det glidende gjennomsnittet for 9 måneder 9 20,33. Derfor er prognosen for måned 10 20 år. Bruk av eksponensiell utjevning med en utjevningskonstant på 0,3 får vi: Som før prognosen for måned 10 er bare gjennomsnittet for måned 9 M 9 18,57 19 (som vi kan ikke ha fraksjonell etterspørsel). For å sammenligne de to prognosene beregner vi gjennomsnittlig kvadratisk avvik (MSD). Hvis vi gjør dette, finner vi det for det glidende gjennomsnittet og for det eksponensielt glatte gjennomsnittet med en utjevningskonstant på 0,3. Totalt ser vi at det tre måneders glidende gjennomsnittet ser ut til å gi de beste månedene fremoverprognoser, da det har en lavere MSD. Derfor foretrekker vi prognosen på 20 som er produsert av tre måneders glidende gjennomsnitt. Forecasting eksempel 1991 UG eksamen Tabellen nedenfor viser etterspørselen etter et bestemt faksmaskinmerke i et varehus i hver av de siste tolv månedene. Beregn fire måneders glidende gjennomsnitt for måneder 4 til 12. Hva ville være din prognose for etterspørselen i måned 13 Bruk eksponensiell utjevning med en utjevningskonstant på 0,2 for å utlede en prognose for etterspørselen i måned 13. Hvilken av de to prognosene for måneden 13 foretrekker du og hvorfor Hvilke andre faktorer som ikke vurderes i de ovennevnte beregningene, kan påvirke etterspørselen etter faksmaskinen i måned 13 Det fire måneders glidende gjennomsnittet for måneder 4 til 12 er gitt av: m 4 (23 19 15 12) 4 17,25 m 5 (27 23 19 15) 4 21 m 6 (30 27 23 19) 4 24,75 m 7 (32 30 27 23) 4 28 m 8 (33 32 30 27) 4 30,5 m 9 (37 33 32 30) 4 33 m 10 (41 37 33 32) 4 35,75 m 11 (49 41 37 33) 4 40 m 12 (58 49 41 37) 4 46,25 Prognosen for måned 13 er bare det bevegelige gjennomsnittet for måneden før det vil si det glidende gjennomsnittet for måned 12 m 12 46.25. Derfor er prognosen for måned 13 46. Bruk av eksponensiell utjevning med en utjevningskonstant på 0,2 får vi: Som før prognosen for måned 13 er bare gjennomsnittet for måned 12 M 12 38.618 39 (som vi kan ikke ha fraksjonell etterspørsel). For å sammenligne de to prognosene beregner vi gjennomsnittlig kvadratisk avvik (MSD). Hvis vi gjør dette, finner vi det for glidende gjennomsnitt og for eksponensielt glatt gjennomsnitt med en utjevningskonstant på 0,2. Generelt ser vi at fire måneders glidende gjennomsnitt ser ut til å gi de beste månedene fremoverprognoser, da det har en lavere MSD. Derfor foretrekker vi prognosen på 46 som er produsert av fire måneders glidende gjennomsnitt. sesongmessig etterspørsel annonsering prisendringer, både dette merket og andre merker generell økonomisk situasjon ny teknologi Forecasting eksempel 1989 UG eksamen Tabellen nedenfor viser etterspørselen etter et bestemt merke av mikrobølgeovn i et varehus i hver av de siste tolv månedene. Beregn et seks måneders glidende gjennomsnitt for hver måned. Hva ville være din prognose for etterspørselen i måned 13 Bruk eksponensiell utjevning med en utjevningskonstant på 0,7 for å utlede en prognose for etterspørselen i måned 13. Hvilke av de to prognosene for måned 13 foretrekker du og hvorfor Nå kan vi ikke beregne en seks måned flytte gjennomsnittet til vi har minst 6 observasjoner - det vil si at vi kun kan beregne et slikt gjennomsnitt fra måned 6 fremover. Derfor har vi: m 6 (34 32 30 29 31 27) 6 30,50 m 7 (36 34 32 30 29 31) 6 32,00 m 8 (35 36 34 32 30 29) 6 32,67 m 9 (37 35 36 34 32 30) 6 34,00 m 10 (39 37 35 36 34 32) 6 35,50 m 11 (40 39 37 35 36 34) 6 36,83 m 12 (42 40 39 37 35 36) 6 38,17 Prognosen for måned 13 er bare det bevegelige gjennomsnittet for måned før det vil si det glidende gjennomsnittet for måned 12 m 12 38,17. Derfor er prognosen for måned 13 38. Anvendelse av eksponensiell utjevning med en utjevningskonstant på 0,7 får vi: I praksis vil det glidende gjennomsnittet gi et godt estimat av gjennomsnittet av tidsserien hvis gjennomsnittet er konstant eller sakte endring. Ved konstant gjennomsnitt vil den største verdien av m gi de beste estimatene for det underliggende gjennomsnittet. En lengre observasjonsperiode vil gjennomsnittlig utvirke virkningen av variabilitet. Formålet med å gi en mindre m er å la prognosen svare på en endring i den underliggende prosessen. For å illustrere foreslår vi et datasett som inkorporerer endringer i det underliggende gjennomsnittet av tidsseriene. Figuren viser tidsseriene som brukes til illustrasjon sammen med den gjennomsnittlige etterspørselen fra hvilken serien ble generert. Middelet begynner som en konstant ved 10. Begynner på tid 21, øker den med en enhet i hver periode til den når verdien av 20 ved tid 30. Da blir det konstant igjen. Dataene blir simulert ved å legge til i gjennomsnitt, en tilfeldig støy fra en Normal-fordeling med null-middel og standardavvik 3. Resultatene av simuleringen avrundes til nærmeste heltall. Tabellen viser de simulerte observasjonene som brukes til eksemplet. Når vi bruker bordet, må vi huske at det til enhver tid bare er kjent med tidligere data. Estimatene til modellparameteren, for tre forskjellige verdier av m, vises sammen med gjennomsnittet av tidsseriene i figuren under. Figuren viser gjennomsnittlig glidende gjennomsnittlig beregning av gjennomsnittet hver gang og ikke prognosen. Prognosene ville skifte de bevegelige gjennomsnittskurver til høyre etter perioder. En konklusjon er umiddelbart tydelig fra figuren. For alle tre estimatene ligger det glidende gjennomsnittet bak den lineære trenden, idet laget øker med m. Laget er avstanden mellom modellen og estimatet i tidsdimensjonen. På grunn av lavet undervurderer det bevegelige gjennomsnittet observasjonene ettersom gjennomsnittet øker. Forskjellerens forspenning er forskjellen på en bestemt tid i middelverdien av modellen og middelverdien forutsatt av det bevegelige gjennomsnittet. Forspenningen når gjennomsnittet øker er negativt. For et avtagende middel er forspenningen positiv. Forsinkelsen i tid og bias innført i estimatet er funksjoner av m. Jo større verdien av m. jo større størrelsen på lag og forspenning. For en kontinuerlig økende serie med trend a. verdiene av lag og forspenning av estimatoren av middelet er gitt i ligningene nedenfor. Eksempelkurverne stemmer ikke overens med disse ligningene, fordi eksempelmodellen ikke øker kontinuerlig, men det begynner som en konstant, endrer seg til en trend og blir konstant igjen. Også eksempelkurvene påvirkes av støyen. Den bevegelige gjennomsnittlige prognosen for perioder inn i fremtiden er representert ved å flytte kurvene til høyre. Forsinkelsen og forspenningen øker proporsjonalt. Ligningene nedenfor angir lag og forspenning av prognoseperioder i fremtiden sammenlignet med modellparametrene. Igjen, disse formlene er for en tidsserie med en konstant lineær trend. Vi bør ikke bli overrasket over dette resultatet. Den bevegelige gjennomsnittlige estimatoren er basert på antagelsen om konstant gjennomsnitt, og eksemplet har en lineær trend i gjennomsnittet i en del av studieperioden. Siden sanntidsserier sjelden vil adlyde forutsetningene til en hvilken som helst modell, bør vi være forberedt på slike resultater. Vi kan også konkludere fra figuren at variasjonen av støyen har størst effekt for mindre m. Estimatet er mye mer flyktig for det bevegelige gjennomsnittet på 5 enn det bevegelige gjennomsnittet på 20. Vi har de motstridende ønskene om å øke m for å redusere effekten av variabilitet på grunn av støyen, og å redusere m for å gjøre prognosen mer lydhør for endringer i gjennomsnitt. Feilen er forskjellen mellom de faktiske dataene og den forventede verdien. Hvis tidsseriene er virkelig en konstant verdi, er den forventede verdien av feilen null og variansen av feilen består av et begrep som er en funksjon av og et andre begrep som er variansen av støyen. Første term er variansen av gjennomsnittet estimert med en prøve av m observasjoner, forutsatt at data kommer fra en befolkning med konstant gjennomsnitt. Denne termen er minimert ved å gjøre m så stor som mulig. Et stort m gjør prognosen uansvarlig for en endring i den underliggende tidsserien. For å gjøre prognosen lydhør for endringer, ønsker vi m så liten som mulig (1), men dette øker feilvariasjonen. Praktisk prognose krever en mellomverdi. Forecasting with Excel Forecasting-tillegget implementerer de bevegelige gjennomsnittlige formlene. Eksempelet nedenfor viser analysen som ble levert av tillegget for prøvedataene i kolonne B. De første 10 observasjonene er indeksert -9 til 0. Sammenlignet med tabellen over, forskyves periodindeksene med -10. De første ti observasjonene gir oppstartsverdiene for estimatet og brukes til å beregne det bevegelige gjennomsnittet for perioden 0. MA (10) kolonnen (C) viser de beregnede bevegelige gjennomsnittene. Den bevegelige gjennomsnittsparameteren m er i celle C3. Fore (1) kolonne (D) viser en prognose for en periode inn i fremtiden. Forespørselsintervallet er i celle D3. Når prognoseperioden endres til et større tall, blir tallene i Fore-kolonnen flyttet ned. Err-kolonnen (E) viser forskjellen mellom observasjonen og prognosen. For eksempel er observasjonen ved tidspunkt 1 6. Den prognostiserte verdien fra det bevegelige gjennomsnittet ved tid 0 er 11,1. Feilen er da -5,1. Standardavviket og gjennomsnittlig avvik (MAD) beregnes i henholdsvis celler E6 og E7.
Du får aldri jobb hvis du ikke har godt svar på dette ofte stilte intervjuespørsmål Velg riktig svar for å finne ut om du er forberedt på et vellykket jobbintervju. Hvorfor ønsker du denne jobben Velg riktig svar: Jeg ønsker å få kunnskap og erfaring i denne arbeidslinjen. Denne jobben tilbyr langsiktig karriereutvikling. Denne jobben er en ekte mulighet for meg å vokse og utvikle. Jeg kan få innvirkning og gi fordel for selskapet Denne jobben vil hjelpe meg med å anta et annet nivå i min karriere. Test ditt jobbintervju Ferdigheter Takk for at du tok deg tid til å intervjue med oss, men weve bestemte oss for å ansette noen andre. Ingen arbeidssøker ønsker å høre disse ordene etter intervjuet. Merk Svare på dette intervjuet spørsmålet feil kan koste deg din nye jobbSolar kraft for de fattige: fakta og tall Solkraft kan bidra til å lette fattigdom på landsbygda. David J. Grimshaw og Sian Lewis skinner et lys på sin fremgang, potensial og fallgruver. Økende tilgang til energi er viktig f...
Comments
Post a Comment